Well-Posedness and Uniform Bounds for a Nonlocal Third Order Evolution Operator on an Infinite Wedge
نویسندگان
چکیده
We investigate regularity and well-posedness for a fluid evolution model in the presence of a three-phase contact point. We consider a fluid evolution governed by Darcy’s Law. After linearization, we obtain a nonlocal third order operator which contains the Dirichlet-Neumann operator on the wedge with opening angle > 0. We show well-posedness and regularity for this linear evolution equation. In the limit of vanishing opening angle, we show the convergence of solutions to a fourth order degenerate parabolic operator, related to the thin-film equation. In the course of the analysis, we introduce and characterize a new type of sum of weighted Sobolev spaces which are suitable to capture the singular limit as → 0. In particular, the nature of the problem requires the use of techniques that are adapted to the problem in the singular domain as well as the degenerate limit problem.
منابع مشابه
EFFECT OF COUNTERPROPAGATING CAPILLARY GRAVITY WAVE PACKETS ON THIRD ORDER NONLINEAR EVOLUTION EQUATIONS IN THE PRESENCE OF WIND FLOWING OVER WATER
Asymptotically exact and nonlocal third order nonlinear evolution equations are derivedfor two counterpropagating surface capillary gravity wave packets in deep water in thepresence of wind flowing over water.From these evolution equations stability analysis ismade for a uniform standing surface capillary gravity wave trains for longitudinal perturbation. Instability condition is obtained and g...
متن کاملNonlocal thermoelastic semi-infinite medium with variable thermal conductivity due to a laser short-pulse
In this article, the thermoelastic interactions in an isotropic and homogeneous semi-infinite medium with variable thermal conductivity caused by an ultra-short pulsed laser heating based on the linear nonlocal theory of elasticity has been considered. We consider that the thermal conductivity of the material is dependent on the temperature. The surface of the surrounding plane of the medium is...
متن کاملSTABILITY ANALYSIS FROM FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR TWO CAPILLARY GRAVITY WAVE PACKETS IN THE PRESENCE OF WIND OWING OVER WATER.
Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two coupled fourth order nonlinear evolution equations have been derived in deep water for two capillary-gravity wave packets propagating in the same direction in the presence of wind flowing over water.We have used a general method, based on Zakharov integral equation.On the basis of these evolution eq...
متن کاملVibration analysis of a Timoshenko non-uniform nanobeam based on nonlocal theory: An analytical solution
In this article free vibration of a Timoshenko nanobeam with variable cross-section is investigated using nonlocal elasticity theory within the scope of continuum mechanics. Small scale effects are modelled after Eringen’s nonlocal elasticity theory while the non-uniformity is presented by exponentially varying width through the beam length with constant thickness. Analytical solution is achiev...
متن کاملNonlocal in Time Problems for Evolution Equations of Second Order
In this paper, nonlocal in time problem for abstract evolution equation of second order is studied and theorem on existence and uniqueness of its solution is proved. Some applications of this theorem for hyperbolic partial differential equations and systems are considered and it is proved, that well-posedness of the mentioned problems depends on algebraic properties of ratios between the dimens...
متن کامل